Gastroenterology. 2013 Sep;145(3):613-24. doi: 10.1053/j.gastro.2013.06.002. Epub 2013 Jun 5.

Post-translational loss of renal TRPV5 calcium channel expression, Ca(2+) wasting, and bone loss in experimental colitis.External 2231691f894ba696de1310221b0a0dbbb31a7251e75115c265587c3d9d5f507c

Radhakrishnan, V. M., Ramalingam, R., Larmonier, C. B., Thurston, R. D., Laubitz, D., Midura-Kiela, M. T., McFadden, R. M., Kuro-O, M., Kiela, P. R., Ghishan, F. K.,
["Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, AZ, USA."]
BACKGROUND & AIMS: Dysregulated Ca(2+) homeostasis likely contributes to the etiology of inflammatory bowel disease-associated loss of bone mineral density. Experimental colitis leads to decreased expression of Klotho, a protein that supports renal Ca(2+) reabsorption by stabilizing the transient receptor potential vanilloid 5 (TRPV5) channel on the apical membrane of distal tubule epithelial cells. METHODS: Colitis was induced in mice via administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) or transfer of CD4(+)interleukin-10(-/-) and CD4(+), CD45RB(hi) T cells. We investigated changes in bone metabolism, renal processing of Ca(2+), and expression of TRPV5. RESULTS: Mice with colitis had normal serum levels of Ca(2+) and parathormone. Computed tomography analysis showed a decreased density of cortical and trabecular bone, and there was biochemical evidence for reduced bone formation and increased bone resorption. Increased fractional urinary excretion of Ca(2+) was accompanied by reduced levels of TRPV5 protein in distal convoluted tubules, with a concomitant increase in TRPV5 sialylation. In mouse renal intermedullary collecting duct epithelial (mIMCD3) cells transduced with TRPV5 adenovirus, the inflammatory cytokines tumor necrosis factor, interferon-gamma, and interleukin-1beta reduced levels of TRPV5 on the cell surface, leading to its degradation. Cytomix induced interaction between TRPV5 and UBR4 (Ubiquitin recoginition 4), an E3 ubiquitin ligase; knockdown of UBR4 with small interfering RNAs prevented cytomix-induced degradation of TRPV5. The effects of cytokines on TRPV5 were not observed in cells stably transfected with membrane-bound Klotho; TRPV5 expression was preserved when colitis was induced with TNBS in transgenic mice that overexpressed Klotho or in mice with T-cell transfer colitis injected with soluble recombinant Klotho. CONCLUSIONS: After induction of colitis in mice via TNBS administration or T-cell transfer, tumor necrosis factor and interferon-gamma reduced the expression and activity of Klotho, which otherwise would protect TRPV5 from hypersialylation and cytokine-induced TRPV5 endocytosis, UBR4-dependent ubiquitination, degradation, and urinary wasting of Ca(2+).
PMID: 23747339External 2231691f894ba696de1310221b0a0dbbb31a7251e75115c265587c3d9d5f507c
Validation: In vivo validation Toggle 893349bafcc528f8346c51dc3420151d67b0126b2c122dd1017121c03fa0f69b
  Assay with endogenous proteins Assay with overexpressed proteins Reference
Cell or tissue Cell or tissue TRP channel construct Interactor construct
TRP channel Interactor Method Species Region Species Region
TRPV5 Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4 Klotho Co-immunoprecipitation mIMCD-3 Human Full-length Mouse Full-length 23747339
(Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4: click the arrow icon to show interactions only between the corresponding TRP channel and the interactor)
TRP / Interactor

To prevent spam comments, we use reCAPTCHA. Please type correct words into the following box.