Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9553-8. doi: 10.1073/pnas.1220231110. Epub 2013 May 20.

Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli.External 2231691f894ba696de1310221b0a0dbbb31a7251e75115c265587c3d9d5f507c

Garcia-Elias, A., Mrkonjic, S., Pardo-Pastor, C., Inada, H., Hellmich, U. A., Rubio-Moscardo, F., Plata, C., Gaudet, R., Vicente, R., Valverde, M. A.,
["Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain."]
Most transient receptor potential (TRP) channels are regulated by phosphatidylinositol-4,5-biphosphate (PIP2), although the structural rearrangements occurring on PIP2 binding are currently far from clear. Here we report that activation of the TRP vanilloid 4 (TRPV4) channel by hypotonic and heat stimuli requires PIP2 binding to and rearrangement of the cytosolic tails. Neutralization of the positive charges within the sequence (121)KRWRK(125), which resembles a phosphoinositide-binding site, rendered the channel unresponsive to hypotonicity and heat but responsive to 4alpha-phorbol 12,13-didecanoate, an agonist that binds directly to transmembrane domains. Similar channel response was obtained by depletion of PIP2 from the plasma membrane with translocatable phosphatases in heterologous expression systems or by activation of phospholipase C in native ciliated epithelial cells. PIP2 facilitated TRPV4 activation by the osmotransducing cytosolic messenger 5'-6'-epoxyeicosatrienoic acid and allowed channel activation by heat in inside-out patches. Protease protection assays demonstrated a PIP2-binding site within the N-tail. The proximity of TRPV4 tails, analyzed by fluorescence resonance energy transfer, increased by depleting PIP2 mutations in the phosphoinositide site or by coexpression with protein kinase C and casein kinase substrate in neurons 3 (PACSIN3), a regulatory molecule that binds TRPV4 N-tails and abrogates activation by cell swelling and heat. PACSIN3 lacking the Bin-Amphiphysin-Rvs (F-BAR) domain interacted with TRPV4 without affecting channel activation or tail rearrangement. Thus, mutations weakening the TRPV4-PIP2 interacting site and conditions that deplete PIP2 or restrict access of TRPV4 to PIP2--in the case of PACSIN3--change tail conformation and negatively affect channel activation by hypotonicity and heat.
PMID: 23690576External 2231691f894ba696de1310221b0a0dbbb31a7251e75115c265587c3d9d5f507c
Validation: In vivo validation Toggle 893349bafcc528f8346c51dc3420151d67b0126b2c122dd1017121c03fa0f69b
  Assay with endogenous proteins Assay with overexpressed proteins Reference
Cell or tissue Cell or tissue TRP channel construct Interactor construct
TRP channel Interactor Method Species Region Species Region
TRPV4 Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4 Pacsin3 Fluorescence resonance energy transfer HEK293 Mouse Full-length Mouse Full-length 23690576
(Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4: click the arrow icon to show interactions only between the corresponding TRP channel and the interactor)
TRP / Interactor

To prevent spam comments, we use reCAPTCHA. Please type correct words into the following box.