Eur J Cell Biol. 2009 Mar;88(3):141-52. doi: 10.1016/j.ejcb.2008.10.002. Epub 2008 Nov 22.

Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation.External 2231691f894ba696de1310221b0a0dbbb31a7251e75115c265587c3d9d5f507c

Becker, D., Bereiter-Hahn, J., Jendrach, M.,
["Institute for Cell Biology and Neuroscience, Center of Excellence Frankfurt: Macromolecular Complexes, JW Goethe University, Frankfurt/Main, Germany."]
Many vertebrate cells react to hypotonic conditions with swelling, followed by an active downregulation of the cell volume; a progress called regulatory volume decrease (RVD). While the actual process of volume decrease by loss of osmotically active molecules like K(+) and Cl(-), followed by water efflux has been extensively investigated, the signal for activation of RVD still remains obscure. Studies with different cell lines demonstrated a participation of the cation channel transient receptor potential vanilloid 4 (TRPV4) as well as the actin cytoskeleton in volume regulation. Therefore, we analyzed putative links between TRPV4 and F-actin in RVD in HaCaT keratinocytes and CHO cells. Laser scanning microscopy studies revealed a distinct colocalization of TRPV4 and actin in highly dynamic membrane structures, such as microvilli, filopodia and lamellipodia edges. After treatment of cells with the actin-destabilizing reagent latrunculin A, TRPV4 and F-actin no longer colocalized within the membrane. In accordance with these data, close interaction between TRPV4 and F-actin was revealed by FRAP and FRET studies. For functional analysis, CHO cells that endogenously do not express TRPV4, were transfected with recombinant TRPV4, which rendered them RVD-competent. Treatment with latrunculin A abolished both, RVD and the accompanying rise of [Ca(2+)](i) after hypotonic stress in TRPV4-transfected CHO cells. Taken together, our data demonstrate a functional interaction between TRPV4 and F-actin in sensing hypotonicity and the onset of RVD.
PMID: 19027987External 2231691f894ba696de1310221b0a0dbbb31a7251e75115c265587c3d9d5f507c
Screening Toggle 893349bafcc528f8346c51dc3420151d67b0126b2c122dd1017121c03fa0f69b
  Experimental screening Non-experimental screening Reference
TRP channel construct Interactor source
TRP channel Interactor Method Species Region Species Organ/tissue Sample type
TRPV4 Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4 Ƣ-actin Inference Prediction 19027987
(Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4: click the arrow icon to show interactions only between the corresponding TRP channel and the interactor)
Validation: In vivo validation Toggle 893349bafcc528f8346c51dc3420151d67b0126b2c122dd1017121c03fa0f69b
  Assay with endogenous proteins Assay with overexpressed proteins Reference
Cell or tissue Cell or tissue TRP channel construct Interactor construct
TRP channel Interactor Method Species Region Species Region
TRPV4 Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4 Ƣ-actin Fluorescence resonance energy transfer CHO Human Full-length Human Full-length 19027987
TRPV4 Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4 Ƣ-actin Co-immunofluorescence staining HaCaT Human Full-length Not used 19027987
(Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4: click the arrow icon to show interactions only between the corresponding TRP channel and the interactor)
TRP / Interactor

To prevent spam comments, we use reCAPTCHA. Please type correct words into the following box.