J Immunol. 2008 Oct 1;181(7):5024-34.

Secretogranin III directs secretory vesicle biogenesis in mast cells in a manner dependent upon interaction with chromogranin A.External 2231691f894ba696de1310221b0a0dbbb31a7251e75115c265587c3d9d5f507c

Prasad, P., Yanagihara, A. A., Small-Howard, A. L., Turner, H., Stokes, A. J.,
["Center for Biomedical Research at The Queen's Medical Center, Honolulu, HI 96813, USA."]
Mast cells are granular immunocytes that reside in the body's barrier tissues. These cells orchestrate inflammatory responses. Proinflammatory mediators are stored in granular structures within the mast cell cytosol. Control of mast cell granule exocytosis is a major therapeutic goal for allergic and inflammatory diseases. However, the proteins that control granule biogenesis and abundance in mast cells have not been elucidated. In neuroendocrine cells, whose dense core granules are strikingly similar to mast cell granules, granin proteins regulate granulogenesis. Our studies suggest that the Secretogranin III (SgIII) protein is involved in secretory granule biogenesis in mast cells. SgIII is abundant in mast cells, and is organized into vesicular structures. Our results show that over-expression of SgIII in mast cells is sufficient to cause an expansion of a granular compartment in these cells. These novel granules store inflammatory mediators that are released in response to physiological stimuli, indicating that they function as bona fide secretory vesicles. In mast cells, as in neuroendocrine cells, we show that SgIII is complexed with Chromogranin A (CgA). CgA is granulogenic when complexed with SgIII. Our data show that a novel non-granulogenic truncation mutant of SgIII (1-210) lacks the ability to interact with CgA. Thus, in mast cells, a CgA-SgIII complex may play a key role in secretory granule biogenesis. SgIII function in mast cells is unlikely to be limited to its partnership with CgA, as our interaction trap analysis suggests that SgIII has multiple binding partners, including the mast cell ion channel TRPA1.
PMID: 18802106External 2231691f894ba696de1310221b0a0dbbb31a7251e75115c265587c3d9d5f507c
Screening Toggle 893349bafcc528f8346c51dc3420151d67b0126b2c122dd1017121c03fa0f69b
  Experimental screening Non-experimental screening Reference
TRP channel construct Interactor source
TRP channel Interactor Method Species Region Species Organ/tissue Sample type
TRPA1 Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4 Secretogranin3 Yeast two-hybrid Rat N-terminus Rat Brain cDNA library 18802106
(Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4: click the arrow icon to show interactions only between the corresponding TRP channel and the interactor)
Validation: In vivo validation Toggle 893349bafcc528f8346c51dc3420151d67b0126b2c122dd1017121c03fa0f69b
  Assay with endogenous proteins Assay with overexpressed proteins Reference
Cell or tissue Cell or tissue TRP channel construct Interactor construct
TRP channel Interactor Method Species Region Species Region
TRPA1 Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4 Secretogranin3 Co-immunoprecipitation RBL-2H3 18802106
(Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4: click the arrow icon to show interactions only between the corresponding TRP channel and the interactor)
TRP / Interactor

To prevent spam comments, we use reCAPTCHA. Please type correct words into the following box.