Cardiovasc Res. 2007 Jan 15;73(2):376-85. Epub 2006 Oct 27.

Insulin potentiates TRPC3-mediated cation currents in normal but not in insulin-resistant mouse cardiomyocytes.External 2231691f894ba696de1310221b0a0dbbb31a7251e75115c265587c3d9d5f507c

Fauconnier, J., Lanner, J. T., Sultan, A., Zhang, S. J., Katz, A., Bruton, J. D., Westerblad, H.,
["Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden."]
OBJECTIVE: Recent studies show that bioactive lipids alter intracellular Ca(2+) handling of cardiac cells differently in normal and insulin-resistant cardiomyocytes. In the present study we measured non-selective cation currents (NSCC) focusing on the interaction between insulin, the bioactive lipid diacylglycerol (DAG) and canonical transient receptor potential 3 (TRPC3) channels. METHODS: Whole cell patch-clamp was used to measure NSCC in ventricular cardiomyocytes isolated from adult wild-type (WT) and insulin resistant, obese ob/ob mice. Western blot, immunoprecipitation and immunofluorescence staining were used to study the concentration and cellular distribution of TRPC3 channels. RESULTS: Application of the membrane permeable DAG analogue (OAG, 30 microM) induced an NSCC, which was approximately 40% smaller in ob/ob than in WT cardiomyocytes. Insulin induced a small NSCC with similar amplitude in ob/ob and WT cells. Pretreatment with insulin (60 nM) increased the OAG-induced NSCC in WT (by approximately 50%) but not in ob/ob cells. OAG-induced currents were inhibited by adding anti-TRPC3 antibodies to the patch pipette solution. The expression of TRPC3 was lower in ob/ob than in WT cardiomyocytes. TRPC3 was detected in glucose transporter 4 (GLUT4) immunoprecipitates. Insulin exposure resulted in a translocation of TRPC3 to the plasma membrane in WT but not in ob/ob cardiomyocytes. CONCLUSIONS: Insulin-resistant ob/ob cardiomyocytes showed decreases in DAG-mediated NSCC, which were accompanied by decreased TRPC3 expression and defective insulin-mediated trafficking of this protein.
PMID: 17156765External 2231691f894ba696de1310221b0a0dbbb31a7251e75115c265587c3d9d5f507c
Screening Toggle 893349bafcc528f8346c51dc3420151d67b0126b2c122dd1017121c03fa0f69b
  Experimental screening Non-experimental screening Reference
TRP channel construct Interactor source
TRP channel Interactor Method Species Region Species Organ/tissue Sample type
TRPC3 Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4 GLUT-4 Inference Prediction 17156765
(Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4: click the arrow icon to show interactions only between the corresponding TRP channel and the interactor)
Validation: In vivo validation Toggle 893349bafcc528f8346c51dc3420151d67b0126b2c122dd1017121c03fa0f69b
  Assay with endogenous proteins Assay with overexpressed proteins Reference
Cell or tissue Cell or tissue TRP channel construct Interactor construct
TRP channel Interactor Method Species Region Species Region
TRPC3 Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4 GLUT-4 Co-immunoprecipitation Mouse cardiomyocytes 17156765
(Link 2bd4d11adb659cddf58197a94e201f0a44c55d8d7cb427c624971b42e122c0a4: click the arrow icon to show interactions only between the corresponding TRP channel and the interactor)
TRP / Interactor

To prevent spam comments, we use reCAPTCHA. Please type correct words into the following box.